Exercise 296

For the following exercises, use the change-of-base formula and either base 10 or base e to evaluate the given expressions. Answer in exact form and in approximate form, rounding to four decimal places.

$$
\log _{2} \pi
$$

Solution

In order to evaluate this expression, set it equal to an unknown variable x.

$$
\log _{2} \pi=x
$$

The base is 2 , the exponent is x, and the result is π.

$$
2^{x}=\pi
$$

To solve for x, take the logarithm of both sides (ln or log-it doesn't matter).

$$
\ln 2^{x}=\ln \pi
$$

Use the property of logarithms that brings the exponent down in front.

$$
x \ln 2=\ln \pi
$$

Divide both sides by $\ln 2$ to solve for x.

$$
x=\frac{\ln \pi}{\ln 2} \approx 1.6515
$$

